

Table of Contents

1. General Specifications 2
2. Electrical Specifications 3
3. Optical Specifications 8
4. I/O Terminal. 10
5. Test 12
6. Appearance Standards 13
7. Code System of Production Lot 16
8. Type Number 16
9. Applying Precautions 16
10. Handling Precautions 17

Revision History

Rev.	Date	Page	Comment	

1.General Specifications

Operating Temp.	$\min .10^{\circ} \mathrm{C} \sim \max .40^{\circ} \mathrm{C}$
Storage Temp.	min. $-20^{\circ} \mathrm{C} \sim \max .60^{\circ} \mathrm{C}$
Dot Pixels	$256(\mathrm{~W}) \times 128(\mathrm{H})$ dots
Dot Size	$0.43(\mathrm{~W}) \times 0.43(\mathrm{H}) \mathrm{mm}$
Dot Pitch	0.47 (W) $\times 0.47(\mathrm{H}) \mathrm{mm}$
Viewing Area	$127.0(\mathrm{~W}) \times 70.0(\mathrm{H}) \mathrm{mm}$
Outline Dimensions	$167.0(\mathrm{~W}) \times 116.0(\mathrm{H}) \times 24.0(\mathrm{D}) \mathrm{mm}$
Weight	250 g max.
LCD Type	NTD-7451 (F-STN / Black \& White-mode / Transmissive
Viewing Angle	6:00
Data Transfer	4-bit parallel data transfer
Backlight	Cold Cathode Fluorescent Lamp (CFL) $\times 1$
Drawings	Dimensional Outline UE-32050B

2. Electrical Specifications

2.1.Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Max.	Units
Supply Voltage (Logic)	VCC-V $_{\text {SS }}$	-	-0.3	6.0	V
Supply Voltage (LCD Drive)	VCC-V $_{\text {EE }}$	-	0	30.0	V
Input Voltage	V_{I}	-	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

2.2.DC Characteristics

2.3.AC Characteristics

	VCC $=5.0 \mathrm{~V} \pm 10 \%$			
Parameter	Symbol	Min.	Max.	Units
Clock Pulse Width	t_{wC}	100	-	ns
Latch Pulse High Level Width	t_{WL}	125	-	ns
Clock Pulse Rise/Fall Time	$\mathrm{tr}_{\mathrm{t}, \mathrm{t}}$	-	50	ns
CP \rightarrow LP Rise Time	t_{CL}	63	-	ns
CP \rightarrow LP Fall Time	$\mathrm{t}_{\mathrm{LSU} 2}$	90	-	ns
LP \rightarrow CP Rise Time	$\mathrm{t}_{\text {LSU1 }}$	90	-	ns
LP \rightarrow CP Fall Time	t_{LC}	63	-	ns
Data Setup Time	$\mathrm{t}_{\text {DSU }}$	50	-	ns
Data Hold Time	$\mathrm{t}_{\text {DHD }}$	80	-	ns
FLM Data Setup Time	$\mathrm{t}_{\text {SETUP }}$	100	-	ns
FLM Data Hold Time	$\mathrm{t}_{\text {HOLD }}$	100	-	ns

2.4.Timing Chart

2.5.Comparison of Display and Data

2.6.Power Supply ON/OFF Sequence

2.6.1.ON Sequence

2.6.2.OFF Sequence

Please maintain the above sequence when turning on and off the power supply of the module. If DISPOFF is supplied to the module while alternate signal for LCD driving (M) is unstable, DC component will be supplied to the LCD panel. This may cause damage the LCD module.

2.7.Lighting Specifications

$\mathrm{Ta}=25^{\circ} \mathrm{C}$							
Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units	Notes
Lamp Voltage	V_{L}	-	-	250	-	Vrms	1
Lamp Current	I_{L}	-	4.0	5.0	6.0	mArms	2
Starting Voltage	VS_{S}	-	600	-	-	Vrms	3
Surface Luminance	L	$\mathrm{I}_{\mathrm{L}}=5.0 \mathrm{~mA}$	50	-	-	$\mathrm{cd} / \mathrm{m}^{2}$	4
Average Life	T_{AL}	$\mathrm{I}_{\mathrm{L}}=5.0 \mathrm{~mA}$	-	20000	-	hrs	5

Note 1: The voltage (r.m.s.) to maintain the electric discharge of the lamp. It is measured after lighting for 3 minutes .

Note 2 : The current (r.m.s.) to flow through the lamp with the electric discharge. It is measured after lighting for 3 minutes.
Note 3 : The voltage at starting the electric discharge when the voltage is increased gradually from 0 V .
Note 4 : Surface Luminance is specified by the initial data of luminance measured at the center of display surface after 20 minutes power on. (All ON pattern)
Note 5 : CFL life is defined as the time for which the initial luminance is attenuated by 50% of the luminance value. Average Life representes the time elapsed at the point of time when the residual ratio becomes below 50% when plural lamps are lighted in comparison with the definition of life mentioned above.

3．Optical Specifications

3．1．LCD Driving Voltage

Parameter	Symbol	Conditions	Min．	Typ．	Max．	Units
Recommended	LCD Driving Voltage Note 1	VCC－VEE		$\mathrm{Ta}=10^{\circ} \mathrm{C}$	-	-
			12.4	13.3	14.2	V
		11.7	-	-	V	

Note 1：Voltage（Applied actual waveform to LCD Module）for the best contrast．The range of minimum and maximum shows tolerance of the operating voltage．The specified contrast ratio and response time are not guaranteed over the entire range．

3．2．Optical Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, 1 / 64$ Duty， $1 / 9$ Bias， $\mathrm{V}_{\mathrm{D}}=13.3 \mathrm{~V}$（Note 4），$\theta=0^{\circ}, \quad \phi=-^{\circ}$

Parameter			Symbol	Conditions	Min．	Typ．	Max．	Units
Contrast Ratio		Note 1	CR	$\theta=0^{\circ}, \quad \phi={ }^{\circ}$	－	15	－	
Viewing Angle				Shown in 3.3				
Response Time	Rise	Note 2	π	－	－	110	200	ms
	Decay	Note 3	$\tau \mathrm{d}$	－	－	160	240	ms

Note 1 ：Contrast ratio is definded as follows．

$$
\mathrm{CR}=\mathrm{LoN} / \mathrm{LoFF}
$$

Lon ：Luminance of the ON segments
Loff：Luminance of the OFF segments
Note 2 ：The time that the luminance level reaches 90% of the saturation level from 0% when ON signal is applied．
Note 3 ：The time that the luminance level reaches 10% of the saturation level from 100% when OFF signal is applied．
Note 4 ：Definition of Driving Voltage V_{D}
Assuming that the typical driving waveforms shown below are applied to the LCD Panel at 1／A Duty－1／B Bias（ A ：Duty Number，B ：Bias Number ）．Driving voltage V_{D} is definded as the voltage Vo－p when the contrast ratio（ $\mathrm{CR}=\mathrm{Lon} / \mathrm{LOFF}$ ）is at its maximum．

〈ON SIGNAL〉

〈OFF SIGNAL〉

3.3.Definition of Viewing Angle and Optimum Viewing Area

- Point shows the point where contrast ratio is measured. : $\theta=0^{\circ}, \phi=-^{\circ}$
- Driving condition : $1 / 64$ Duty, $1 / 9$ Bias, $V_{D}=13.3 \mathrm{~V}, \mathrm{f}_{\mathrm{F}}=70 \mathrm{~Hz}$

270°

270°
- Area \square shows typ. $\mathrm{CR} \geqq 2$

3.4.System Block Diagram

4.I/O Terminal

4.1.Pin Assignment

No.	Symbol	Level	Function
1	VCC	-	Power Supply for Logic
2	VSS	-	Power Supply (0V, GND)
3	VEE	-	Power Supply for LCD Drive
4	LP	$\mathrm{H} \rightarrow \mathrm{L}$	Data Latch Signal
5	M	H / L	Alternate Signal for LCD Drive
6	$\overline{\text { DISPOFF }}$	H / L	Display Control Signal H : Display on L : Display off
7	NC	-	Non-connection
8	FLM	H / L	First Line Marker
9	CP	$\mathrm{H} \rightarrow \mathrm{L}$	Clock Signal for Shifting Data
10	NC	-	Non-connection
11	D0	H / L	Display Data
12	D1	H / L	Display Data
13	D2	H / L	Display Data
14	D3	H / L	Display Data
15	FL	-	Power Supply for CFL (HOT)
16	FL (GND)	-	Power Supply for CFL (GND)

4.2.Example of Power Supply

It is recommended to apply a potentiometer for the contrast adjust due to the tolerance of the driving voltage and its temperature dependence.

$\mathrm{R} 1+\mathrm{R} 2+\mathrm{VR}=10 \sim 20 \mathrm{~K} \Omega$
$\mathrm{Tr}=2 \mathrm{SA} 1202$ or equivalent

4.3.Block Diagram

FL

5.Test

No change on display and in operation under the following test condition.

No.	Parameter	Conditions	Notes
1	High Temperature Operating	$40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 96 \mathrm{hrs}$ (operation state)	
2	Low Temperature Operating	$10^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 96 \mathrm{hrs}$ (operation state)	3
3	High Temperature Storage	$60^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 96 \mathrm{hrs}$	4
4	Low Temperature Storage	$-20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 96 \mathrm{hrs}$	3, 4
5	Damp Proof Test	$40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 90 \sim 95 \% \mathrm{RH}, 96 \mathrm{hrs}$	3, 4
6	Vibration Test	Total fixed amplitude : 1.5 mm Vibration Frequency : 10~55 Hz One cycle 60 seconds to 3 directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for each 15 minutes	5
7	Shock Test	To be measured after dropping from 60 cm high on the concrete surface in packing state.	

Note 1 : Unless otherwise specified, tests will be conducted under the following condition.
Temperature : $20 \pm 5^{\circ} \mathrm{C}$
Humidity : $65 \pm 5 \%$
Note 2 : Unless otherwise specified, tests will be not conducted under functioning state.
Note 3 : No dew condensation to be observed.
Note 4 : The function test shall be conducted after 4 hours storage at the normal temperature and humidity after removed from the test chamber.
Note 5 : Vibration test will be conducted to the product itself without putting it in a container.

6. Appearance Standards

6.1.Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.
The distance between the eyes and the sample shall be more than 30 cm .
All directions for inspecting the sample should be within 45° against perpendicular line.

6.2.Definition of applicable Zones

A Zone : Active display area
B Zone : Area from outside of "A Zone" to validity viewing area
C Zone : Rest parts

A Zone + B Zone = Validity viewing area

6.3.Standards

No.	Parameter	Criteria			
1	Black and White Spots, Foreign Substances	(1) Round Shape			
		\qquad	Acceptable Number		
			A	B	C
		D $\leqq 0.1$	*	*	*
		$0.1<\mathrm{D} \leqq 0.2$	3	5	*
		$0.2<\mathrm{D} \leqq 0.25$	2	3	*
		$0.25<\mathrm{D} \leqq 0.3$	0	1	*
		$0.3<$ D	0	0	*
		$\mathrm{D}=($ Long + Short $) / 2$ * Disregard			
		(2) Line Shape		ble	
		$\mathrm{X}(\mathrm{mm}) \triangle \mathrm{Y}(\mathrm{mm})>$	A	B	C
		$0.03 \geqq \mathrm{~W}$	*	*	*
		$2.0 \geqq \mathrm{~L} \quad 0.05 \geqq \mathrm{~W}$	3	3	*
		$1.0 \geqq \mathrm{~L} \quad 0.1 \geqq$ W	3	3	*
		$0.1<\mathrm{W}$		me	
		X: Length Y: Width Total defects shall not exceed	isre		
2	Air Bubbles (between glass \& polarizer)	Zone ${ }^{\text {a }}$ Acceptable Number			
		Dimension (mm)	A	B	C
		$\mathrm{D} \leqq 0.3$	*	*	*
		$0.3<\mathrm{D} \leqq 0.4$	3	*	*
		$0.4<\mathrm{D} \leqq 0.6$	2	3	*
		$0.6<$ D	0	0	*
		* : Disregard Total defects shall not exceed 3 .			

No.	Parameter	Criteria	
3	The Shape of Dot	(1) Dot Shape (with Dent) (2) Dot Shape (with Projection) \square Should not be connected to next dot. (3) Pin Hole (4) Deformation $(\mathrm{X}+\mathrm{Y}) / 2 \leqq 0.2 \mathrm{~mm}$ Total acceptable number : 1/dot, $5 /$ cell (Defect number of (4) : 1pc.)	
4	Polarizer Scratches	Refer to the sample.	
5	Polarizer Dirts	If the stains are removed easily from LCDP surface, the module is not defective.	
6	Complex Foreign Substance Defects	Black spots, line shaped foreign substances or air bubbles between glass \& polarizer should be 5pcs maximum in total.	
7	Distance between Different Foreign Substance Defects	$\mathrm{D} \leqq 0.2: 20 \mathrm{~mm}$ or more $0.2<\mathrm{D}: 40 \mathrm{~mm}$ or more	
DMF6104NF-FW (AE)		97-0106 OPTREX CORPORATION	Page 15/17

7. Code System of Production Lot

The production lot of module is specified as follows :

8. Type Number

The type number of module is specified on the back of module as follows :

Etching or Printing

9. Applying Precautions

Please contact us when questions and/or new problems not specified in this specifications arise.

10. Handling Precautions

Operex Products are designed for use in ordinary electronic devices such as business machines, telecommunications equipment, measurement devices and etc..
Optrex Products are not designed, intended, or authorized for use in any application in which the failure of the product could result in a situation where personal injury or death may occur. These applications include, but are not limited to, life-sustaining equipment, nuclear control devices, aerospace equipment, devices related to hazardous or flammable materials, etc. (If Buyer intends to purchase or use the Optrex Products for such unintended or unauthorized applications, Buyer must secure prior written consent to such use by a responsible officer of Optrex Corporation.) Should Buyer purchase or use Optrex Products for any such unintended or unauthorized application (without such consent), Buyer shall indemnify and hold Optrex and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages and expenses, and reasonable attorney's fees, arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Optrex was negligent regarding the design or manufacture of the part.

1) LCD may be broken because it is made of glass.
2) Polarizer is a soft material and can easily be scratched.
3) Please avoid static electricity.Please be sure to ground human body and electric appliances during work.
(2) It is preferable to use conductive mat on table and wear cotton clothes or conduction processed fiber. Synthetic fiber is not recommended.
(3) Please slowly peel off protective film, because static electricity may be charged.
4) If it is necessary to store LCD modules for a long time, please comply with the following procedures. If storage condition is not satisfactory, display (especially polarizer) may be deteriorated or soldering I/O terminals may become difficult (some oxide is generated at I/O terminals plating).
(1) Store as delivered by Optrex
(2) If you store as unpacked, put in anti-static bag, seal its opening and store where it is not subjected to direct sunshine nor fluorescent lamp.
(3) Store at temperature 0 to $+35^{\circ} \mathrm{C}$ and at low humidity. Please refer to our specification sheets for storage temperature range and humidity condition.
5) The module does not contain excess current limiter.

Please design the limiter to cut excess current in your power supply circuit.
6) Liquid crystal may be leaked when display is broken. Never taste it. If your hands or clothes touch it, please immediately wash using soap.
7) The connection between the bezel and Vss (GND) is not specified in the module.
(Some module do not maintain connection between them.)
Please consult OPTREX to specify the connection.
8) A high voltage over 1000 V is applied at the connector of CFL cable when the CFL inverter is connected and energized. Please do not touch there incidentally or accidentally to avoid a skin burn. And please set the cable properly in the housing to avoid a worn-out of isolated cover of cable wire.

Optrex shall not be responsible for any infringement of industrial property rights of third parties in any country arising out of the application or use of Optrex Products, except which directly concern the structure or production of such products.

