LM151X05-A3C1 Rev. 1 Page 1 of 24 | Data Display AG | | |------------------------------------|--| | LM151X05-A3C1
15.1" XGA TFT LCD | | | PRELIMINARY
SPECIFICATION | | | | | | | | | | | | | | | | | LM151X05-A3C1 Rev. 1 Page 2 of 24 | NO. | ITEM | Page | |-----|------------------------------|------| | - | COVER | 1 | | - | CONTENTS | 2 | | - | RECORD OF REVISIONS | 3 | | 1 | GENERAL DESCRIPTION | 4 | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | 3 | ELECTRICAL SPECIFICATIONS | 6 | | 3-1 | ELECTRICAL CHARACTREISTICS | 7 | | 3-2 | INTERFACE CONNECTIONS | 8 | | 3-3 | SIGNAL TIMING SPECIFICATIONS | 9 | | 3-4 | SIGNAL TIMING WAVEFORMS | 10 | | 3-5 | COLOR INPUT DATA REFERNECE | 11 | | 3-6 | POWER SEQUENCE | 12 | | 4 | OPTICAL SPECIFICATIONS | 14 | | 5 | MECHANICAL CHARACTERISTICS | 17 | | 6 | RELIABILITY | 21 | | 7 | INTERNATIONAL STANDARDS | 22 | | 7-1 | SAFETY | 22 | | 7-2 | EMC | 22 | | 8 | PACKING | 23 | | 8-1 | DESIGNATION OF LOT MARK | 23 | | 8-2 | PAKING FORM | 23 | | 9 | PRECAUTIONS | 24 | LM151X05-A3C1 Rev. 1 Page 3 of 24 ## **RECORDS OF REVISIONS** | Revision No | Revision No | Page | DESCRIPTION | | |-------------|---------------|------|--|--| | Ver 0.0 | Mar. 02, 2001 | - | First Draft, Preliminary Specification | **SPECIFICATIONS** LM151X05-A3C1 Rev. 1 Page 4 of 24 ### 1. General Description The LM151X05 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 15.1 inches diagonally measured active display area with XGA resolution(768 vertical by 1024 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors. The LM151X05 has been designed to apply the TTL interface method. The LM151X05 LCD is intended to support applications where high response time, wide viewing angle, high color saturation, and high color depth are very important. In combination with the vertical arrangement of the sub-pixels, the LM151X05 characteristics provide an excellent flat panel display for automation products such as monitors, Kiosk Terminals or Point of Information Terminals. #### **General Features** | Active screen size | 15.1 inches (307.2 x 230.4 mm) diagonal | |------------------------|---| | Outline Dimension | 352.0 (H) x 263.5 (V) x 14.0 (D) mm (Typ.) without user connector | | Pixel Pitch | 0.300 mm x 0.300 mm | | Pixel format | 1024 horiz. By 768 vert. Pixels RGB stripes arrangement | | Color depth | 6-bit, 262,144 colors | | Luminance, white | 200 cd/m ² (Typ.) | | Power Consumption | 1.6 Watts Logic / 8.6 Watts CCFL (Typ. With chess 8x6 pattern) | | Weight | 1150g (Typ.) | | Display operating mode | Transmissive mode, normally white | | Surface treatments | Hard coating(3H) Anti-glare treatment of the front polarizer | LM151X05-A3C1 Rev. 1 Page 5 of 24 ### 2. Absolute Maximum Ratings The following are maximum values which, if exceeded, may cause operation or damage to the unit. **Table 1 ABSOLUTE MAXIMUM RATINGS** | Doromotor | | Val | ues | 11-24- | Notes | | |--|--|--------------------------------|---|--------------------------------------|----------------------|--| | Parameter | symbol | Min. | Max. | Units | | | | Power Input Voltage Input Signal Voltage Operating Temperature Storage Temperature Operating Ambient Humidity Storage Humidity | V_{CC} V_{i} T_{OP} T_{ST} H_{OP} H_{ST} | -0.3
-0.3
0
-20
10 | 4.0
V _{CC} +0.3
50
60
90 | Vdc
Vdc
°C
°C
%RH
%RH | At 25 ? 5°C 1 1 1 1 | | Note 1: Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water. LM151X05-A3C1 Rev. 1 Page 6 of 24 ### 3. Electrical Specifications #### 3-1. Electrical Characteristics The LM151X05 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD. **Table 2 ELECTRICAL CHARACTERISTICS** | Parameter | Symbol | | Values | Units | Notes | | |--|--|--|---|--|--|----------------------------| | Faiailletei | Symbol | Min. | Тур. | Max. | Office | Notes | | MODULE : Power Supply Input Voltage Power Supply Input Current Power Consumption Rush Current | V _{CC}
I _{CC}
P _C
I _{RUSH} | 3.15
420
1.2 | 3.3
485
1.6
- | 3.45
550
2.0
2.5 | Vdc
mA
Watts
A | 1
1
2 | | LAMP: Operating Voltage Operating Current Established Starting Voltage at 25 °C at 0 °C Operating Frequency Discharge Stabilization Time Power Consumption Life Time | V _{BL}
I _{BL}
V _S
f _{BL}
T _S
P _{BL} | 520(9mA)
3.0
-
-
45
-
30,000 | 540(8mA)
8.0
-
-
60
8.6
- | 660(3mA)
9.0
850
1100
80
3
9.5 | V _{RMS} mA V _{RMS} V _{RMS} kHz Minutes Watts Hrs | 3
4
5
6
7
8 | Note: The design of the inverter must have specifications for the lamp in LCD Assembly. The performance of the Lamp in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC Inverter. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter (no lighting,flicker,etc) never occurs. When you confirm it, the LCD Assembly should be operated in the same condition as installed in your instrument. **Note:** Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape. - 1. The specified current and power consumption are under the V_{CC} =3.3V, 25°C, f_V =60Hz condition whereas full black pattern is displayed and f_V is the frame frequency. - 2. The duration of rush current is about 20ms. - 3. The variance of the voltage is ±10%. - 4. The voltage above V_{BS} should be applied to the lamps for more than 1second for start-up. Otherwise, the lamps may not be turned on. ## **SPECIFICATIONS** LM151X05-A3C1 Rev. 1 Page 7 of 24 - Let's define the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%. The used lamp current is the lamp typical current. - 7. The lamp power consumption shown above does not include loss of external inverter. The used lamp current is the lamp typical current. - 8. The life time is determined as the time at which brightness of lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 ±2° C. LM151X05-A3C1 Rev. 1 Page 8 of 24 #### 3-2. Interface Connections This LCD employs three interface connections, a 41 pin connector is used for the module electronics and two connectors, s three pin connector, are used for the integral backlight system. The electronics interface connector is a model DF9B-41P-1V manufactured by Hirose and. the pin configuration for the connector is shown in the table below. (LCD Connector: DF9B-41P-1V or equivalent, Mating Connector: DF9B-41S-1V or equivalent) **Table 3 MODULE CONNECTOR PIN CONFIGURATION** | Pin | Symbol | Description | Pin | Symbol | Description | |-----|----------------|---|-----|-------------------|---| | 1 | GND | System Ground. Note 1 | 2 | DCLK | Data Input Clock | | 3 | GND | System Ground | 4 | H_{sync} | H _{sync} .(Horizontal Sync.) or Ground | | 5 | $V_{\rm sync}$ | V _{sync} .(Vertical Sync.) or Ground | 6 | GŃD | System Ground | | 7 | GŃD | System Ground | 8 | GND | System Ground | | 9 | R0 | Red data 0 (LSB) | 10 | R1 | Red data 1 | | 11 | R2 | Red data 2 | 12 | GND | System Ground | | 13 | R3 | Red data 3 | 14 | R4 | Red data 4 | | 15 | R5 | Red data 5 (MSB) | 16 | GND | System Ground | | 17 | GND | System Ground | 18 | GND | System Ground | | 19 | G0 | Green data 0 (LSB) | 20 | G1 | Green data 1 | | 21 | G2 | Green data 2 | 22 | GND | System Ground | | 23 | G3 | Green data 3 | 24 | G4 | Green data 4 | | 25 | G5 | Green data 5 (MSB) | 26 | GND | System Ground | | 27 | GND | System Ground | 28 | GND | System Ground | | 29 | B0 | Blue data 0 (LSB) | 30 | B1 | Blue data 1 | | 31 | B2 | Blue data 2 | 32 | GND | System Ground | | 33 | B3 | Blue data 3 | 34 | B4 | Blue data 4 | | 35 | B5 | Blue data 5 (MSB) | 36 | GND | System Ground | | 37 | DE | Data Enable Signal | 38 | V_{CC} | Power Supply for LCD Module | | 39 | V_{CC} | Power Supply for LCD Module | 40 | V_{CC} | Power Supply for LCD Module | | 41 | V_{CC} | Power Supply for LCD Module | | | | Notes: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCDs neetal frame. 2. All V_{CC} (power input) pins should be connected together. 3. Because This LOM operates in Data Enable signal only mode, that is no problem whether Hsync. And Vsync. Signals are applied or connected with Ground. The backlight interface connector is a noodel BHR-03VS-1, manufactured by JST. The mating connector part number is SMO2(8.0) B-BHS-1-TB or equivalent. The pin configuration for the connector is shown in the table below. Tab I e 4 BACKLI CHT CONNECTOR FI N CONFI CURATI ON | Яn | Syntbol | Description | Not es | |----|---------|------------------------|--------| | 1 | HV | Lamp power input (Hgh) | 1 | | 2 | NC | No connect | | | 3 | LV | Lamp power input(Low) | | Notes: 1. The input power terminal (Hgh) is colored pink. LM151X05-A3C1 Rev. 1 Page 9 of 24 ## 3-3. Signal Timing Specifications This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for it's proper operation. #### **Table 5 TIMING TABLE** | ITEM | SYMBOL | | MIN. | TYP. | MAX. | UNIT | NOTE | |-------|---------------------------|--------------|------|------|------|------------------|--------------| | | Frequency | fclk | 50 | 65 | 79 | MHz | | | Delle | Width-Low | twcL | 3 | - | - | ns | | | Dclk | Width-High | t wcH | 3 | - | - | ns | | | | Duty | D | 0.4 | 0.5 | 0.6 | | D=tclkH/tclk | | | Period | t HP | 1056 | 1344 | 1368 | 4 | | | Hsync | Width-Active | twн | 8 | 136 | - | t clk | 1 | | | Period | t vp | 777 | 806 | - | t urn | | | Vsync | Width active | twv | 2 | 6 | - | thp | 1 | | | Set up Time | tsı | 3 | - | - | | | | | Hold Time | tнı | 3 | - | - | ns | for DCLK | | DTMG | Horizontal
Back Porch | tнвр | 8 | 168 | - | t _{CLK} | | | DIMG | Horizontal
Front Porch | tHFP | 8 | 24 | - | L CLK | 2 | | | Vertical
Back Porch | t vbp | 5 | 29 | - | | 2 | | | Vertical
Front Porch | tvfp | 2 | 3 | - | t HP | | | DATA | Set up Time | tsp | 2.5 | - | - | ns | for DCLK | | | Hold Time | t HD | 1.5 | - | - | | | #### Notes - 1. Because this LCM operates in Data Enable signal only mode, that is no problem whether Hsync. And Vsync. Signals are inserted or connected with Ground. - 2. If Data Enable signal is abnormally applied to the user connector of LCM, The display of LCM is black. LM151X05-A3C1 Rev. 1 Page 10 of 24 LM151X05-A3C1 Rev. 1 Page 11 of 24 # LM151X05 Liquid Crystal Display ## 3-5. Color Input Data Reference The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. **Table 6 COLOR DATA REFERENCE** | | | | | | | | 1 | Inpi | ut Co | lor D | ata | | | | | | | | | |-----------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | Color | MSE | 3 | Re | ed | | LSB | MSE | 3 | Gre | een | | LSB | MSE | 3 | BI | ue | | LSB | | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | В3 | B2 | B1 | В0 | | Basic
Colors | Black
Red(63)
Green(63)
Blue(63)
Cyan
Magenta
Yellow
White | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
0
1
0
1
0
1 | 0
0
1
0
1
0
1 | 0
0
1
0
1
0
1 | 0
0
1
0
1
0
1 | 0
0
1
0
1
0
1 | 0
0
1
0
1
0
1 | 0 0 0 1 1 1 0 1 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | | Red | Red(00) Dark
Red(01)
Red(02)
:
Red(61)
Red(62)
Red(63) Bright | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | | Green | Green(00)Dark
Green(01)
Green(02)
:
Green(61)
Green(62)
Green(63)Bright | 0
0
0
:
0
0 | 0 0 0 0 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | 0 0 0 :: 0 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | | Blue | Blue(00) Dark Blue(01) Blue(02) : Blue(61) Blue(62) Blue(63) Bright | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | LM151X05-A3C1 Rev. 1 Page 12 of 24 ### 3-6. Power Sequence Interface Signal, V_i (TTL signals) **Power for Lamp** | 90%
10%
0V
T ₁ | | | | 90%
10%
T ₅ T ₆ | | |------------------------------------|----------------|------------|----------------|---|---| | | | Valid Data | | | | | 0V | T ₃ | | T ₄ | | | | OFF | | LAMP ON | | OFF | _ | | Darameter | | Values | | | | | | | | |----------------|------|--------|------|-------|--|--|--|--|--| | Parameter | Min. | Тур. | Max. | Units | | | | | | | | | | | | | | | | | | T ₁ | - | - | 20 | ms | | | | | | | T ₂ | 0 | - | 50 | ms | | | | | | | T_3^- | 300 | - | - | ms | | | | | | | T_4 | 300 | - | - | ms | | | | | | | T ₅ | 0 | - | 50 | ms | | | | | | | T_6^{S} | - | - | 20 | ms | | | | | | | T_7 | 500 | - | - | ms | | | | | | | , | | | | | | | | | | Notes: - 1. Please avoid floating state of interface signal at invalid period. - 2. When the interface signal is invalid, be sure to pull down the power supply for LCD $\rm V_{\rm CC}$ to 0V. - 3. Lamp power must be turn on after power supply for LCD and interface signal are valid. LM151X05-A3C1 Rev. 1 Page 13 of 24 ### 4. Optical Specification Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of ? and ? equal to 0 °. FIG. 1 presents additional information concerning the measurement equipment and method. #### FIG. 1 Optical Characteristic Measurement Equipment and Method | Parameter | Symbol | | Values | Units | Notes | | |--|--|--|--|--|-------------------|-------| | i didilicici | Gyllibol | Min. | Тур. | Max. | Office | Notes | | Contrast Ratio | CR | 200 | 300 | - | | 1 | | Surface Luminance, white | L _{WH} | 160 | 200 | - | cd/m ² | 2 | | Luminance Variation | WHITE | - | - | 1.7 | | 3 | | Luminance Uniformity-Angular
Dependent (TCO99) | L _R | - | - | 1.7 | | 4 | | Response Time
Rise Time
Decay Time | Tr
Tr _R
Tr _D | -
- | 7
18 | 15
30 | ms | 5 | | CIE Color Coordinates Red Green Blue White Viewing Angle x axis, right(?=0°) | XR
YR
XG
YG
XB
YB
XW
YW | 0.593
0.307
0.272
0.555
0.116
0.078
0.283
0.299 | 0.623
0.337
0.302
0.585
0.146
0.108
0.313
0.329 | 0.653
0.367
0.332
0.615
0.176
0.138
0.343
0.359 | degree | 6 | | x axis, left (?=186°)
y axis, up (?=90°)
y axis, down (?=270°) | ?l
?u
?d | 70
50
55 | 75
55
60 | -
-
- | S | | | Gray Sclae | - | - | - | - | | 7 | ## **SPECIFICATIONS** LM151X05-A3C1 Rev. 1 Page 14 of 24 Notes: Contrast Ratio(CR) is defined mathematically as: Surface Luminance with all white pixels Contrast Ratio = Surface Luminance with all black pixels - Surface luminance is the center point across the LCD surface 50 cm from the surface with all pixels displaying full white. For more information see FIG 2. When I_{BI} =8mA, L_{WH=}160cd/m² (Min.) 200cd/m² (Typ.) - 3. The variation in surface luminance , WHITE is determined by measuring L $_{ON}$ at each test position 1 through 13, and then dividing the maximum L $_{ON}$ of 13 points luminance by minimum L $_{ON}$ of 13 points luminance. For more information see FIG 2. WHITE = Maximum(L $$_{ON1}$$,L $_{ON2}$, L $_{ON13}$) Minimum(L $_{ON1}$,L $_{ON2}$, L $_{ON13}$) 4. Luminance Uniformity-Angular Dependent (L_R): TCO '99. TCO '99 Certification Requirements and test methods for environmental labeling of Display [Flat]report No.2 (X1.5.2 Luminance Uniformity) - Measure Pattern: 80% White Pattern (50Gray Level Pattern(L50)) - Measure Point: 2 Point (Point L & R) -Luminance: 125 cd/m² - Measure Distance: 57? - Measure Method: Measure Luminance at each measure Point 2EA at the angle of +30deg. and -30deg. - Calculate the L_R Value : $$L_{R} = ((L_{max,+30deg.} / L_{min, +30deg.}) + (L_{max,-30deg.} / L_{min, -30deg.})) / 2$$ - 5. Response time is the time required for the display to transition from to black (Rise Time, Tr_R) and from black to white (Decay Time, Tr_D). For additional information see FIG 4. - 6. Viewing angle is the angle at which the contrast ratio is greater than 5. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z-axis which is normal to the LCD surface. For more information see FIG 5. - 7. Gray scale specification | Gray Level | Luminance (%)
(Typ.) | |------------|-------------------------| | LO | 0.30 | | L7 | 0.80 | | L15 | 3.99 | | L23 | 10.78 | | L31 | 21.0 | | L39 | 34.9 | | L47 | 53.5 | | L55 | 75.5 | | L63 | 100 | LM151X05-A3C1 Rev. 1 Page 15 of 24 FIG. 2 Luminance <measuring point for luminance variation> <measuring point for surface luminance> FIG. 3 Luminance Uniformity-Angular Dependent(TCO 99) Flat panel VDU $L_{max,+30^{\circ}} \text{ and } L_{min,+30^{\circ}}$ LM151X05-A3C1 Rev. 1 Page 16 of 24 #### FIG. 4 Response Time The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white". ### FIG. 5 Viewing angle <dimension of viewing angle range> LM151X05-A3C1 Rev. 1 Page 17 of 24 ### 5. Mechanical Characteristics The contents provide general mechanical characteristics for the model LM151X05. In addition the figures in the next page are detailed mechanical drawing of the LCD. | | Horizontal | 352.0 ? 0.5 mm | | | | |--------------------------|--|----------------|--|--|--| | Outside dimensions | Vertical | 263.5 ? 0.5 mm | | | | | | Depth | 14.0 ? 0.5 mm | | | | | B . | Horizontal | 311.2 ? 0.5 mm | | | | | Bezel area | Vertical | 234.4 ? 0.5 mm | | | | | A attion disculation and | Horizontal | 307.2 mm | | | | | Active display area | Vertical | 230.4 mm | | | | | Weight(approximate) | 1,150g(Typ.), | 1,210 g (max.) | | | | | Surface Treatment | Hard coating (3H) Anti-glare treatment of the front polarizer Haze (13%) | | | | | LM151X05-A3C1 Rev. 1 Page 19 of 24 LM151X05 Liquid Crystal Display ## **SPECIFICATIONS** LM151X05-A3C1 Rev. 1 Page 20 of 24 ## 6. Reliability #### **Environment test condition** | No. | Test Item | Conditions | |-----|---|---| | 1 | High temperature storage test | Ta= 60°C 240h | | 2 | Low temperature storage test | Ta= -20°C 240h | | 3 | High temperature operation test | Ta= 50°C 50%RH 240h | | 4 | Low temperature operation test | Ta= 0°C 240h | | 5 | Vibration test
(non-operating) | Waveform : Random Vibration : 1.0G RMS Bandwidth : 10 ~ 500Hz Direction : X, Y, Z Duration : 20min one time each direction. | | 6 | Shock test
(non-operating) | Waveform : Half sine wave,2ms Shock level : 120G Direction : ±X, ±Y, ±Z one time each direction. | | 7 | Altitude
operating
storage / shipment | 0 - 10,000 feet (3048m)
0 - 40,000 feet (12,192m) | ### { Result Evaluation Criteria } There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition. LM151X05-A3C1 Rev. 1 Page 21 of 24 ## LM151X05 Liquid Crystal Display #### 7. International Standards #### 7-1. Safety - a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - c) EN 60950: 1992+A1: 1993+A2: 1993+A3: 1995+A4: 1997+A11: 1997 IEC 950: 1991+A1: 1992+A2: 1993+A3: 1995+A4: 1996 European Committee for Electrotechnical Standardization(CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment. #### 7-2. EMC - a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992 - b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference - c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization (CENELEC), 1998 LM151X05-A3C1 Rev. 1 Page 22 of 24 #### LM151X05 Liquid Crystal Display ### 8. Packing ### 8-1. Designation of Lot Mark #### a) Lot Mark A,B,C : SIZE D : YEAR E : MONTH F,G: PANEL CODE H: ASSEMBLY CODE I,J,K,L,M: SERIAL NO. #### Note: #### 1. YEAR | YEAR | 97 | 98 | 99 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |------|----|----|----|------|------|------|------|------|------|------|------| | Mark | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | #### 2. MONTH | MONTH | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | #### 3. Serial No. | Serial No. | 1 ~ 99999 | 100000 ~ | |------------|---------------|-----------------------------| | Mark | 00001 ~ 99999 | A0001 ~ A9999,······, Z9999 | #### b) Location of Lot Mark Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package quantity in one box: 8 pcs b) Box Size: 365 mm × 345 mm × 449 mm LM151X05-A3C1 Rev. 1 Page 23 of 24 #### LM151X05 Liquid Crystal Display #### 9. PRECAUTIONS Please pay attention to the following when you use this TFT LCD module. #### 9-1. MOUNTING PRECAUTIONS - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. - And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth (some cosmetics are determined to the polarizer). - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 9-2. OPERATING PRECAUTIONS - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: $V = \pm 200 \text{ mV}$ (over and under shoot voltage). - (2) Response time depends on the temperature (in lower temperature, it becomes longer). - (3) Brightness depends on the temperature (in lower temperature, it becomes lower). And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. ## **SPECIFICATIONS** LM151X05-A3C1 Rev. 1 Page 24 of 24 #### 9-3. ELECTROSTATIC DISCHARGE CONTROL Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. #### 9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE Strong light exposure causes degradation of polarizer and color filter. #### 9-5. STORAGE When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM - (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer. - Please carefully peel off the protection film without rubbing it against the polarizer. - (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off. - (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.