Embedding success in your business

DATASHEET

TFT COLOR LCD MODULE NL6448BC26-22F

Date: September 2009

www.avnet-embedded.eu

TFT COLOR LCD MODULE

NL6448BC26-22F

21cm (8.4 Type) VGA

DATA SHEET DOD-PP-0860 (1st edition)

This DATA SHEET is updated document from PRELIMINARY DATA SHEET DOD-PP-0694(2)

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NEC LCD Technologies, Ltd. (hereinafter called "NEC"). No part of this document will be used, reproduced or copied without prior written consent of NEC.

NEC does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NEC.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NEC, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "**Standard**", "**Special**", and "**Specific**" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NEC sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NEC standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NEC quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 Backlight lamp	
4.3.3 Power supply voltage ripple	
4.3.4 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	
4.4.2 Backlight lighting circuit	.11
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5.1 LCD panel signal processing board	
4.5.2 Backlight lamp	
4.5.3 Positions of plug and socket	.13
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.7 DISPLAY POSITIONS	
4.8 SCANNING DIRECTIONS	
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Outline of input signal timings	.16
4.9.2 Timing characteristics	
4.9.3 Input signal timing chart	
4.10 OPTICS	
4.10.1 Optical characteristics	
4.10.2 Definition of contrast ratio	
4.10.3 Definition of luminance uniformity	
4.10.4 Definition of response times	
4.10.5 Definition of viewing angles	.23
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS.	
7.3.1 Handling of the product	
7.3.2 Environment.	
7.3.3 Characteristics	
7.3.4 Other	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	.29

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL6448BC26-22F is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

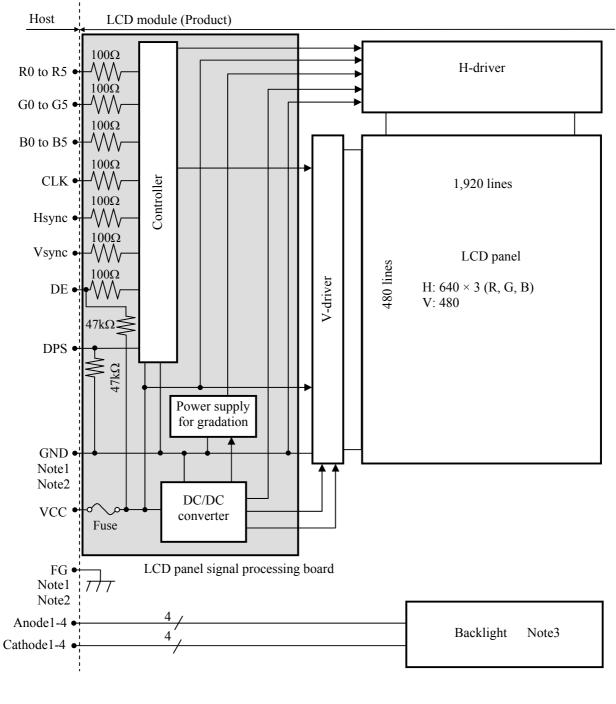
1.2 APPLICATION

• For industrial use

1.3 FEATURES

- High luminance
- High contrast
- Wide viewing angle
- Wide temperature range
- 6-bit digital RGB signals
- Reversible-scan direction
- LED backlight type
- Replaceable lamp holder for backlight
- Acquisition product for UL60950-1/CSA C22.2 No.60950-1-03 (File number: E170632)
- Compliant with the European RoHS directive (2002/95/EC)

☆

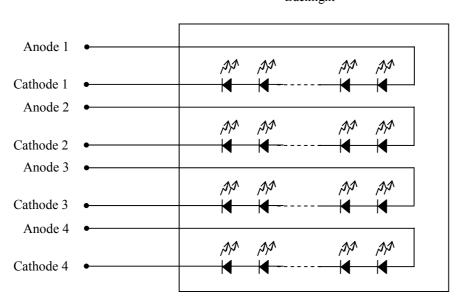

☆

2. GENERAL SPECIFICATIONS

Display area	170.88 (H) × 128.16 (V) mm
Diagonal size of display	21cm (8.4inches)
Drive system	a-Si TFT active matrix
Display color	262,144 colors
Pixel	640 (H) × 480 (V) pixels
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	$0.089 (H) \times 0.267 (V) mm$
Pixel pitch	0.267 (H) × 0.267 (V) mm
Module size	200.0 (W) × 152.0 (H) × 10.5 (D) mm (typ.)
Weight	330g (typ.)
Contrast ratio	1,000:1 (typ.)
Viewing angle	 At the contrast ratio ≥10:1 Horizontal: Right side 80° (typ.), Left side 80° (typ.) Vertical: Up side 80° (typ.), Down side 80° (typ.)
Designed viewing direction	 At DPS= Low or open: Normal scan Viewing direction without image reversal: Up side (12 o'clock) Viewing direction with contrast peak: Down side (6 o'clock) Viewing angle with optimum grayscale (γ=2.2): Normal axis (perpendicular)
Polarizer surface	Clear
Polarizer pencil-hardness	3H (min.) [by JIS K5400]
Color gamut	At LCD panel center 40% (typ.) [against NTSC color space]
Response time	$\begin{array}{c} Ton+Toff (10\% \longleftrightarrow 90\%) \\ 18ms (typ.) \end{array}$
Luminance	At IL = 25mA/One circuit800cd/m2 (typ.)
Signal system	6-bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE), Horizontal synchronous signal (Hsync), Vertical synchronous signal (Vsync)
Power supply voltage	LCD panel signal processing board: 3.3V or 5.0V
Backlight	LED backlight type: (Replaceable part • Lamp holder set: Type No. 84LHS12)
Power consumption	<i>At IL= 25mA /One circuit, Checkered flag pattern</i> 3.9 W (typ.)

☆ ☆

☆


3. BLOCK DIAGRAM

Note1:	Relations between	GND (Signal grou	nd) and FG (Frame	ground) in the LC	D module are as
	follows.				_
	a) 10 E a		37.1 1		

	GND - FG	Not connected	
ote2	GND and FG must be connected to cus	stomer equipment's ground	and it is

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds are connected together in customer equipment.

Note3: Backlight in detail

Backlight

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$200.0 \pm 0.5 \text{ (W)} \times 152.0 \pm 0.5 \text{ (H)} \times 10.5 \pm 0.5 \text{ (D)}$	Note1	mm
Display area	170.88 (H) × 128.16 (V)	Note1	mm
Weight	330 (typ.), 350 (max.)		g

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter			Symbol	Rating	Unit	Remarks
Power supply voltage	LCD panel signal p	rocessing board	VCC	-0.3 to +6.5	V	-
Input voltage	Display s Note		VD	-0.3 to VCC+0.3	V	
for signals	Function Note	•	VF	-0.3 10 VCC+0.3	v	-
Backlight	Forward c	urrent	IL	35	mA	per one circuit
	Storage temperature		Tst	-30 to +80	°C	-
Operation	g temperature	Front surface	TopF	-20 to +70	°C	Note3
Operating	gtemperature	Rear surface	TopR	-20 to +70	°C	Note4
				≤ 9 5	%	Ta≤40°C
	Relative humidity		DU	≤ 85	%	$40^{\circ}C < Ta \le 50^{\circ}C$
Note5			RH	≤ 55	%	50°C <ta≤ 60°c<="" td=""></ta≤>
				≤ 36	%	60°C <ta≤ 70°c<="" td=""></ta≤>
Absolute humidity Note5			АН	≤ 70 Note6	g/m ³	Ta> 70°C

Note1: CLK, Hsync, Vsync, DE, DATA (R0 to R5, G0 to G5, B0 to B5) Note2: DPS

Note3: Measured at center of LCD panel surface (including self-heat)

Note4: Measured at center of LCD module's rear shield surface (including self-heat)

Note5: No condensation

Note6: Water amount at $Ta = 70^{\circ}C$ and RH = 36%

☆ ☆

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

	U						(Ta= 25°C)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltag	0	VCC	3.0	3.3	3.6	V	at VCC= 3.3V
i ower suppry voltag	C	vee	4.75	5.0	5.25	V	at VCC= 5.0V
Dower supply ourren	+	ICC	-	280 Note1	450 Note2	mA	at VCC= 3.3V
r ower suppry curren	Power supply current		-	180 Note1	280 Note2	mA	at VCC= 5.0V
Logic input voltage for	High	VDH	0.7VCC	-	VCC	V	
display signals Low		VDL	0	-	0.3VCC	V	CMOS level
Input voltage for DPS	High	VFH	0.7VCC	-	VCC	V	
signal	Low	VFL	0	-	0.3VCC	V	

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

NL6448BC26-22F

☆

☆

4.3.2 Backlight lamp

					(Ta= 25°	C, Note1, Note2)	_
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Forward current	IL	-	25	27.5	mA	Note3	
Forward Voltage	VL	-	29.7	34.2	V	at IL= 25 mA /One circuit	

Note1: Please drive with constant current .

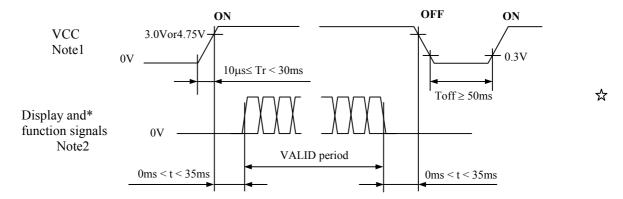
 Note2: The Luminance uniformity may be changed depending on the current variation between 4 circuits. It is recommended that the current value difference between each circuit is less than 5%.
 Note3: See "4.2 ABSOLUTE MAXIMUM RATINGS".

4.3.3 Power supply voltage ripple

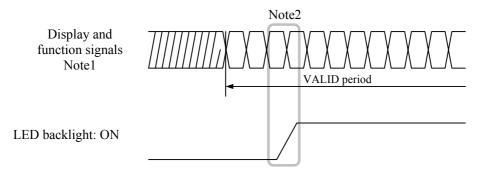
This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power sup	ply voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VCC	3.3V	≤ 100	mVp-p
vee	5.0V	≤ 100	mVp-p

Note1: The permissible ripple voltage includes spike noise.


4.3.4 Fuse

Parameter		Fuse	Rating	Fusing current	Remarks
T arameter	Туре	Supplier	Katilig	Fusing current	Kelliarks
VCC	FCC16202AB	KAMAYA ELECTRIC	2.0A	4.0A	Note1
vee	FCC16202AB	CO., LTD.	32V	4.0A	INOLEI


Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board

- Note1: In terms of voltage variation (voltage drop) while VCC rising edge is below 3.0V in "VCC = 3.3V" or 4.75V in "VCC = 5.0V", a protection circuit may work, and then this product may not work.
- Note2: Display signals (CLK, Hsync, Vsync, DE, DATA (R0 to R5, G0 to G5, B0 to B5)) and function signal (DPS) must be Low or High-impedance, exclude the VALID period (See above sequence diagram), in order to avoid that internal circuits is damaged. If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. VCC should be cut when the display and function signals are stopped.
- 4.4.2 Backlight lighting circuit

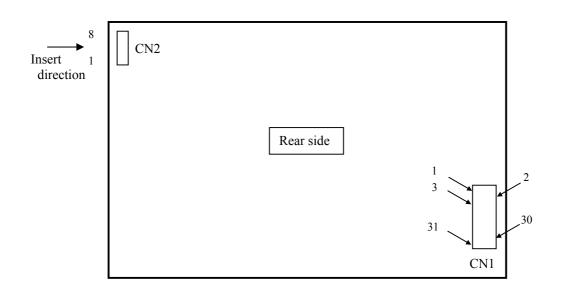
- Note1: These are the display and function signals for LCD panel signal processing board.
- Note2: The backlight should be turned on within the valid period of display and function signals, in order to avoid unstable data display.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): DF9C-31P-1V (2*) (Hirose Electric Co., Ltd. (HRS)) Adaptable plug: DF9-31S-1V (2*), DF9-31S-1V (3*) (Hirose Electric Co., Ltd. (HRS))

Pin No.	Symbol	Signal	Remarks	
1	GND	Ground	Note1	
2	CLK	Dot clock		
3	Hsync	Horizontal synchronous signal	-	
4	Vsync	Vertical synchronous signal		
5	GND	Ground	Note1	
6	R0	Red data (LSB)	Least significant bit	
7	R1	Red data		
8	R2	Red data		
9	R3	Red data		
10	R4	Red data		
11	R5	Red data (MSB)	Most significant bit	
12	GND	Ground	Note1	
13	G0	Green data (LSB)	Least significant bit	
14	G1	Green data		
15	G2	Green data		
16	G3	Green data		
17	G4	Green data		
18	G5	Green data (MSB)	Most significant bit	
19	GND	Ground	Note1	
20	B0	Blue data (LSB)	Least significant bit	
21	B1	Blue data		
22	B2	Blue data		
23	B3	Blue data] -	
24	B4	Blue data		
25	B5	Blue data (MSB)	Most significant bit	
26	GND	Ground	Note1	
27	DE	Selection of DE / Fixed mode	High or Open: Fixed mode Data enable signal: DE mode	
28	VCC	Power supply	Note1	
29	VCC	Power supply	INOTE I	
30	N.C.	-	Keep this pin Open.	
31	DPS	Selection of scan direction	High: Reverse scan Low or Open: Normal scan Note2	


Note1: All GND and VCC terminals should be used without any non-connected lines.

Note2: See "4.8 SCANNING DIRECTIONS ".

4.5.2 Backlight lamp

CN2 plug Adaptable	(LCD module side socket:): SM08B-SRSS-TB (J.S.T. Mfg. Co. SHR-08V-S (J.S.T. Mfg. Co., Ltd.)	
Pin No.	Symbol	Signal	Remarks
1	A1	Anode1	-
2	K1	Cathode1	-
3	A2	Anode2	-
4	K2	Cathode2	-
5	A3	Anode3	-
6	К3	Cathode3	-
7	A4	Anode4	-
8	K4	Cathode4	-

4.5.3 Positions of plug and socket

4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 262,144 colors in 64 gray scales. Also the relation between display colors and input data signals is as the following table.

Display	colors	Data signal (0: Low level, 1: High level)																	
Display	01013	R 5	R4	R 3	R 2	R 1	R 0	G5	G4	G3	G2	G1	GO	B5	B4	B3	B2	B1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
tsic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
${ m B}_{\epsilon}$	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	\uparrow				:						:						:		
ы а	\downarrow				:						:						:		
Red	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
sci	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green gray scale	1				:						:						:		
en e	\downarrow				:						:						:		
Gree	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
\cup	_	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ray	↑ I				:						:						:		
Blue gray scale	\downarrow			-	:	_	-			-	:	_	-				:	_	
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	DI	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel (See figure of "4.8 SCANNING DIRECTIONS ".).

C (0, 0)	В					
$\left(\begin{array}{cc} C(&0,&0) \end{array}\right)$	C(1, 0)	•••	C(X, 0)	•••	C(638, 0)	C(639, 0)
C(0, 1)	C(1, 1)	•••	C(X, 1)	•••	C(638, 1)	C(639, 1)
•	•	٠	•	٠	•	•
•	•	•••	•	•••	•	•••
•	•	•	•	•	•	•
C(0, Y)	C(1, Y)	•••	C(X, Y)	•••	C(638, Y)	C(639, Y)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	•
•	•	•	•	•	•	•
C(0, 478)	C(1,478)	•••	C(X,478)	•••	C(638,478)	C(639,478)
C(0,479)	C(1,479)	• • •	C(X,479)	• • •	C(638,479)	C(639,479)

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view. Also the arrow shows the direction of scan.

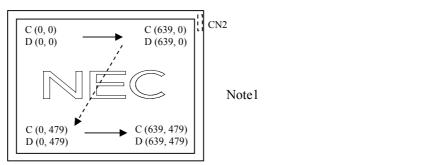


Figure 1. DPS= Low or Open (Normal scan)

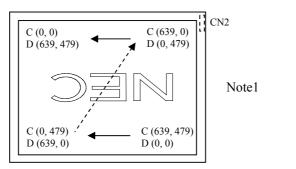
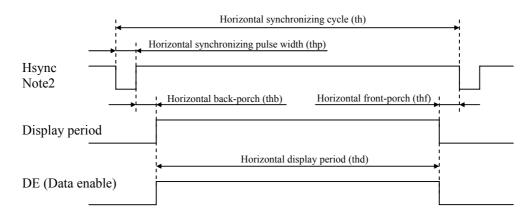


Figure2. DPS= High (Reverse scan)

Note1: Meaning of C (X, Y) and D (X, Y)

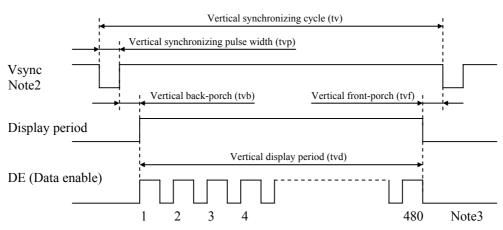
C (X, Y): The coordinates of the display position (See "4.7 DISPLAY POSITIONS".) D (X, Y): The data number of input signal for LCD panel signal processing board ☆

☆


☆

☆

4.9 INPUT SIGNAL TIMINGS


- 4.9.1 Outline of input signal timings
 - Horizontal signal

Note1

• Vertical signal

- Note1: This diagram indicates virtual signal for set up to timing.
- Note2: Fixed mode cannot be used while working of DE mode.

Note3: See "4.9.3 Input signal timing chart" for numeration of pulse.

NL6448BC26-22F

- 4.9.2 Timing characteristics
- (a) Fixed mode

					1			(Note1, Note3)	
Parameter			Symbol	min.	typ.	max.	Unit	Remarks	
	Frequ	1/tc	21.0	25.175	29.0	MHz	39.72ns (typ.)		
CLK	Dı	ıty	tcd	0.4	0.5	0.6	-		
	Rise time	, Fall time	tcrf	-	-	10	ns	-	
DATA		Setup time	tds	3	-	-	ns		
(R0-R5) (G0-G5)	CLK-DATA	Hold time	tdh	5	-	-	ns	-	
(B0-B5)	Rise time	, Fall time	tdrf	-	-	10	ns		
	G	-1-	41-	30.0	31.778	33.6	μs	31.468kHz (typ.)	
	Су	cie	th		800		CLK		
	Display	v period	thd		640		CLK		
	Front-	thf		16		CLK	-		
11	Pulse	thp	10	96	-	CLK			
Hsync	Back-porch		thb	-	48	134	CLK		
	Total of pulse width and back-porch		thp + thb		144		CLK	Note2	
	CLK Harris	Setup time	ths	3	-	-	ns		
	CLK- Hsync	Hold time	thh	5	-	-	ns	-	
	Rise time	Rise time, Fall time			-	10	ns		
	G	-1-	4.1	16.1 16.683		17.2 ms		59.94Hz (typ.)	
	Су	cie	tv	525			Н		
	Display	v period	tvd	480			Н		
	Front-	porch	tvf		12		Н	-	
¥7	Pulse	width	tvp	1	2	-	Н		
Vsync	Back-	porch	tvb	-	31	32	Н		
	Total of pulse wid	th and back-porch	tvp + tvb		33		Н	Note2	
	Have Var-	Setup time	tvhs	3	-	-	ns		
	Hsync - Vsync	Hold time	tvhh	5	-	-	ns	-	
	Rise time.	, Fall time	tvrf	-	-	10	ns		

(Note1, Note3)

☆

Note1: Definition of parameters is as follows.

tc = 1CLK, tcd = tch/tc, th = 1H

Note2: Keep tvp + tvb and thp + thb within the table. If it is out of specification, display position will be shifted to right/left side or up/down.

Note3: Vertical cycle (tv) should be equal to the integral multiple of Horizontal cycle (th).

☆

NL6448BC26-22F

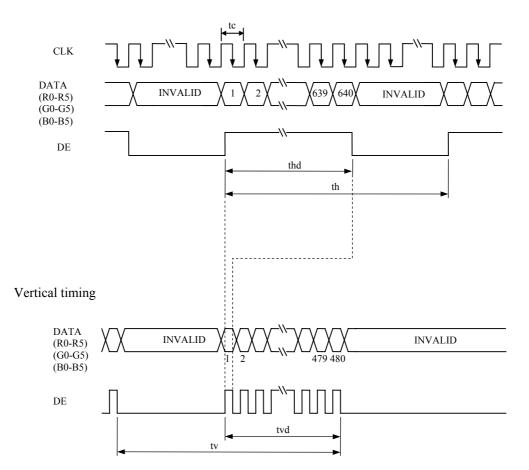
(b) DI	E mode
--------	--------

						(Note1	, Note2, Note3)
Parameter			min.	typ.	max.	Unit	Remarks
Fre	1/tc	21.0	25.175	29.0	MHz	39.72ns (typ.)	
I	Duty	tcd	0.4	0.5	0.6	-	
Rise tim	ne, Fall time	tcrf	-	-	10	ns	-
	Setup time	tds	3	-	-	ns	
CLK-DATA	Hold time	tdh	5	-	-	ns	-
Rise tim	ne, Fall time	tdrf	-	-	10	10 ns 33.6 μs - CLK	
Horizontal	Cuela		30.0	31.778	33.6	μs	31.468kHz (typ.)
	Cycle	tii	-	800	-	CLK	
	Display period	thd		640		CLK	-
	Cuala	tx.	16.1	16.683	17.2	ms	59.94Hz (typ.)
Vertical (One frame)	Cycle	tv	-	525	-	Н	
	Display period	tvd		480		Н	
	Setup time	tdes	3	-	-	ns	-
ULK-DE	Hold time	tdeh	5	-	-	ns	
Rise tim	ne, Fall time	tderf	-	-	10	ns	
	Fre I Rise tim CLK-DATA Rise tim Horizontal Vertical (One frame) CLK-DE Rise tim	Fireture Rise time Rise time Attraction CLK-DATA Setup time Hold time Rise time Fall time Getup time Getup time Getup time Particul Glisplay period Obisplay period CLK-DE Setup time Glisplay period Rise time Setup time Glisplay period Rise time	Frequency1/tcIter1/tcUtytcdRise time, Fall timetdfOther fametdfOther fametdf<	Frequency1/tc21.0 \Box tcd0.4Rise time, Fall timetcrfCLK-DATASetup timetdsHold timetdh5Rise time, Fall timetdrfRise time, Fall timetdrfHorizontalCyclethDisplay periodthdVertical (One frame)CyclethdDisplay periodthd-Display periodtvd-CLK-DE (One frame)Setup timetdesStap timetdes3CLK-DE Rise time, Fall timetderf5Rise time, Fall timetderf5	Frequency 1/tc 21.0 25.175 \Box 0.4 0.5 0.4 0.5 Rise time, Fall time tcd 0.4 0.5 CLK-DATA Setup time tds 3 $-$ Hold time tdh 5 $-$ Rise time, Fall time tdh 5 $-$ Rise time, Fall time tdh 5 $-$ Horizontal Cycle th $ -$ Horizontal Cycle th $ -$ Vertical (One frame) Cycle th $ -$ Vertical (One frame) Cycle tv $ -$ Display period thd $ -$ CLK-DE Display period tvd $ -$ Rise time, Fall time tdes 3 $-$	Frequency 1/tc 21.0 25.175 29.0 Itcd 0.4 0.5 0.6 Rise time tcrf - 10 CLK-DATA Setup time tds 3 - - Hold time tdh 5 - - Rise time, Fall time tdrf 5 - 10 Rise time, Fall time tdrf 5 - 10 Rise time, Fall time tdrf - 10 31.778 Horizontal Cycle th 30.0 31.778 33.6 Horizontal Cycle th - 10 Vertical (One frame) Cycle th 16.1 16.683 17.2 Vertical (One frame) Cycle tv 16.1 16.683 17.2 Lexet time tvd 11 16.683 17.2 Marce time tvd 10 10 10 Vertical (One frame) Setup time tvd 3 - Display period tvd 3 - - CLK-DE Setup time tdes 3 - - Rise time, Fall time tder 5 -	ParameterSymbolmin.typ.max.UnitFrequency1/tc21.025.17529.0MHz \Box \Box 0.40.50.6-Rise time, Fall timetcrf10nsCLK-DATASetup timetds3nsHold timetdh5nsRise time, Fall timetdrf-10nsRise time, Fall timetdrf-10nsRise time, Fall timetdrf-10nsPortizontalCycleth-10nsMorizontalCycleth-10nsVertical (One frame)Cycleth16.116.68317.2msVertical (One frame)Setup timetdes3-HLtc.PAMolt timetdes3-NHCLK-DEInsplay periodtvd-480-HRise time, Fall timetdes3nsRise time, Fall timetdef5-nsns

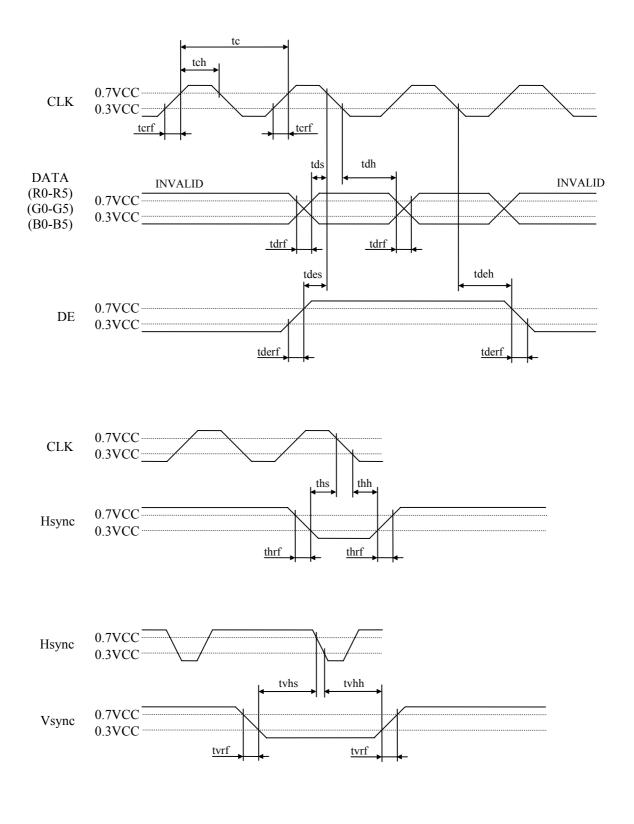

Note1: Definition of parameters is as follows.

tc=1CLK, tcd=tch/tc, th=1H

Note2: Hsync signal (CN1-Pin No.3) and Vsync signal (CN1-Pin No.4) are not used inside the product at DE mode, but do not keep these pins open to avoid noise problem.


Note3: Vertical cycle (tv) should be equal to the integral multiple of Horizontal cycle (th).

- 4.9.3 Input signal timing chart
- (a) Fixed mode



(b) DE mode

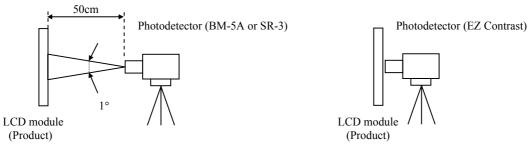
Horizontal timing

(c) Common item of Fixed mode and DE mode

NL6448BC26-22F

4.10 OPTICS

4.10.1 Optical characteristics


							(Note1,	Note2)	
r	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks	
e	White at center $\theta R=0^\circ, \ \theta L=0^\circ, \ \theta U=0^\circ, \ \theta D=0^\circ$	L	450	800	-	cd/m ²	BM-5A	-	
tio	White/Black at center $\theta R=0^\circ, \theta L=0^\circ, \theta U=0^\circ, \theta D=0^\circ$	CR	600	1,000	-	-	BM-5A	Note3	
formity	White $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	LU	-	1.25	1.4	-	BM-5A	Note4	
White	x coordinate	Wx	0.263	0.313	0.363	-			
white	y coordinate	Wy	0.279	0.329	0.379	-			
Chromaticity $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x coordinate	Rx	-	0.583	-	-			
Green	x coordinate	Gx	-	0.348	-	-	SR_3	Note5	
Ultell	y coordinate	Gy	-	0.547	-		SK-3		
naticity $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
Blue	y coordinate	By	-	0.158	-	-			
ut	$\theta R= 0^\circ, \ \theta L= 0^\circ, \ \theta U= 0^\circ, \ \theta D= 0^\circ$ at center, against NTSC color space	С	35	40	-	%			
me	White to Black	Ton	-	3	5	ms	BM-54	Note6	
inc	Black to White	Toff	-	15	21	ms	DIVI-JA	Note7	
Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR \ge 10$	θR	70	80	-	0			
Left	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR \ge 10$	θL	70	80	-	0	EZ	Nata	
Up	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θU	70	80	-	4 - 63 - 79 - - - - - - - - - - - - - -	Contrast	Note8	
Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	70	80	-	0			
	r tio formity White Red Green Blue ut me Right Left Up	weWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ formity $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ formity $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ White $\psi R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ White \mathbf{x} coordinateRed \mathbf{x} coordinateGreen \mathbf{x} coordinateBlue \mathbf{x} coordinate $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color spacemeBlack to WhiteRight $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ Left $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, 0 CR \ge 10$	rConditionSymbolceWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LtioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CRformityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LUWhite \mathbf{x} coordinateWxWhite \mathbf{y} coordinateWyRed \mathbf{x} coordinateRxgreen \mathbf{x} coordinateRyGreen \mathbf{x} coordinateGyBlue \mathbf{x} coordinateByut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color spaceCmeBlack to WhiteToffRight $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR Left $\theta U = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θL Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU	rConditionSymbolmin.ceWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L450tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR600formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-Redx coordinateWx0.263y coordinateRx-greenx coordinateRxy coordinateRy-greenx coordinateGxy coordinateGy-Bluex coordinateBxy coordinateBy-ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ Cat center, against NTSC color spaceCmeBlack to WhiteToffRight $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR $0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θL 70Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 70	rConditionSymbolmin.typ.ceWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L450800tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR6001,000formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.25White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.25White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ Wu0.2630.313White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ Wu0.2790.329Redx coordinateRx-0.583y coordinateRy-0.360Greenx coordinateGx-0.348y coordinateGy-0.547Bluex coordinateBx-0.153ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ C3540meWhite to BlackTon-3Black to WhiteToff-15Right $\theta U = 0^{\circ}, \theta D = 0^{\circ}, C R ≥ 10$ θR 7080Left $\theta U = 0^{\circ}, \theta L = 0^{\circ}, C R ≥ 10$ θU 7080	rConditionSymbolmin.typ.max.ceWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L450800-tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR6001,000-formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.251.4White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.251.4White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ Wu0.2630.3130.363White \mathbf{y} coordinateWy0.2790.3290.379Red \mathbf{x} coordinateRx-0.583- \mathbf{y} coordinateRy-0.360-Green \mathbf{x} coordinateGx-0.348- \mathbf{y} coordinateGy-0.547-Blue \mathbf{x} coordinateBx-0.153- \mathbf{y} coordinateBy-0.158- \mathbf{u} $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ C3540 \mathbf{me} White to BlackTon-35 \mathbf{me} Black to WhiteToff-1521Right $\theta U = 0^{\circ}, \theta D = 0^{\circ}, C R \ge 10$ θR 7080- \mathbf{U} $\theta R = 0^{\circ}, \theta L = 0^{\circ}, C R \ge 10$ θU 7080-	rConditionSymbolmin.typ.max.Unit ce White at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ L450800- cd/m^2 tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ CR6001,000formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.251.4-White x coordinateWx0.2630.3130.363-White x coordinateRx-0.583Red x coordinateRy-0.360Green x coordinateGx-0.348y coordinateBy-0.153ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D = 0^{\circ}, \theta D = 0^{\circ}$ C3540-meWhite to BlackTon-35msRight $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR 7080- 0 $\theta R = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR 7080-	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VCC= 3.3V, IL= 25mA/One circuit, Display mode: VGA, Horizontal cycle= $\frac{1}{31.468}$ Hz, Vertical cycle= 1/59.94Hz, DPS= Low or Open: Normal scan

Optical characteristics are measured at luminance saturation after 20minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: See "4.10.2 Definition of contrast ratio".

- Note4: See "4.10.3 Definition of luminance uniformity".
- Note5: These coordinates are found on CIE 1931 chromaticity diagram.
- Note6: Product surface temperature: TopF= 28.5°C
- Note7: See "4.10.4 Definition of response times".
- Note8: See "4.10.5 Definition of viewing angles".

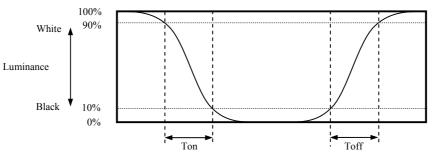
4.10.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

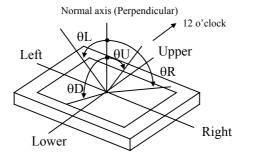
Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.10.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.


Luminance uniformity (LU) = <u>Maximum luminance from ① to ⑤</u> <u>Minimum luminance from ① to ⑤</u>

The luminance is measured at near the 5 points shown below.


	106	320	533
80	(]		@
240			
400			5

4.10.4 Definition of response times

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90% (See the following diagram.).

4.10.5 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

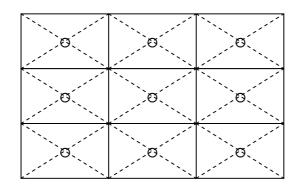
This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit	☆
LED elementary substance	25°C (Ambient temperature of LED) Continuous operation, IL= 25mA / One circuit	50,000	h	☆

☆ ☆

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for LCD module but the value for LED elementary substance.


Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Test item	Test item Condition			
High temperature and humidity (Operation)	 60 ± 2°C, RH= 90%, 240hours Display data is black. 			
High temperature (Operation)	 70 ± 3°C, 240hours Display data is black. 			
Heat cycle (Operation)	 -20 ± 3°C1hour 70 ± 3°C1hour 50cycles, 4 hours/cycle Display data is black. 			
Thermal shock (Non operation)	 -30 ± 3°C30minutes 80 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	No display malfunctions		
ESD (Operation)	 150pF, 150Ω, ±10kV 9 places on a panel surface Note2 10 times each places at 1 sec interval 			
Dust (Operation)	 Sample dust: No. 15 (by JIS-Z8901) 15 seconds stir 8 times repeat at 1 hour interval 			
Vibration (Non operation)	 5 to 100Hz, 19.6m/s² 1 minute/cycle X, Y, Z directions 120 times each directions 	No display malfunctions No physical damages		
Mechanical shock (Non operation)	 539m/s², 11ms ±X, ±Y, ±Z directions 5 times each directions 			

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS", after understanding these contents!

 This sign has the meaning that customer will be injured by personnel or the product will sustain a damage, if customer has wrong operations.

 This sign has the meaning that customer will be injured by personnel, if customer has wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: To be not greater 539m/s² and to be not greater 11ms, Pressure: To be not greater 19.6 N (\$\$\phi16mm\$ iig)\$)

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② When the product is put on the table temporarily, display surface must be placed downward.
- ③ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ④ The torque for product mounting screws must never exceed 0.294N·m. Higher torque might result in distortion of the bezel.
- ⑤ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- ⑦ Do not push nor pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- ③ Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal for the worst, please wash it out with soap.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
- ③ Do not operate in high magnetic field. Circuit boards may be broken down by it.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

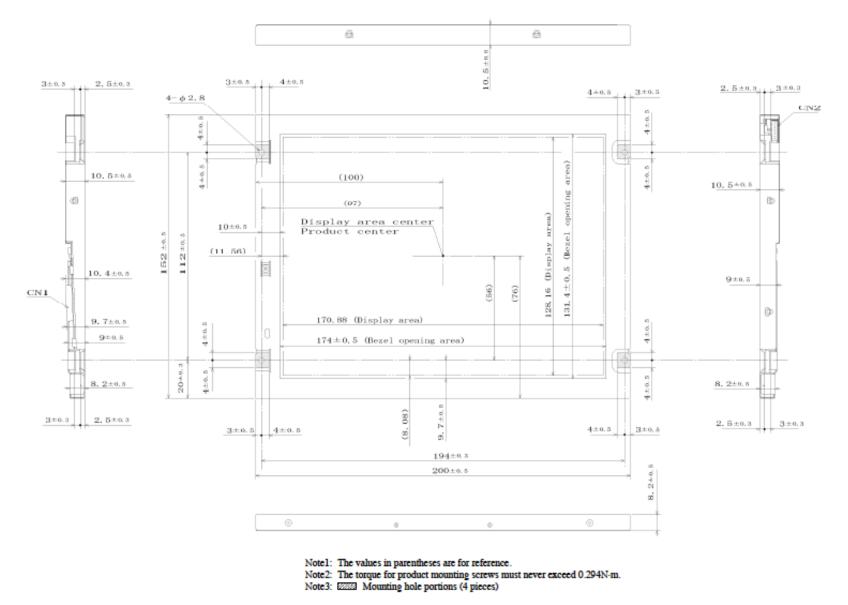
The following items are neither defects nor failures.

- ① Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
- ② Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ④ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.

7.3.4 Other

- ① All GND and VCC terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ See "REPLACEMENT MANUAL FOR LAMP HOLDER SET", when replacing lamp holder set.
- ④ Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NEC for repair and so on.
- The information of China RoHS directive six hazardous substances or elements in this product is as follows.

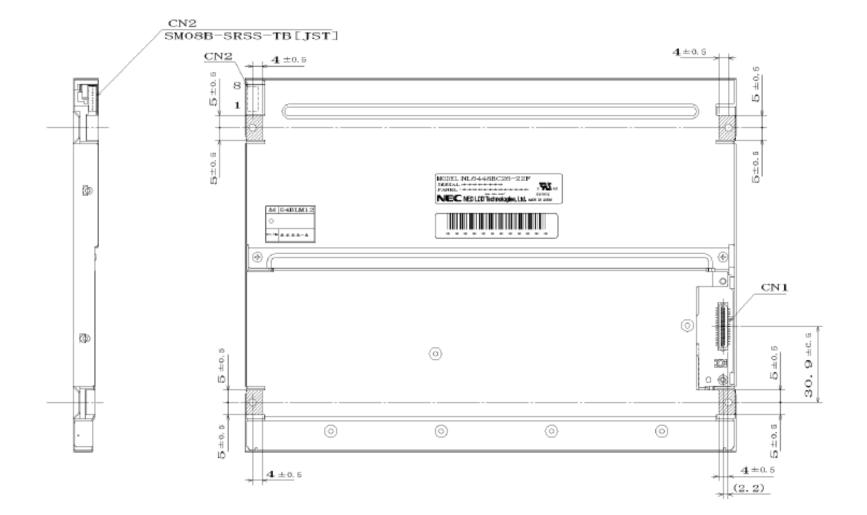
	China RoHS directive six hazardous substances or elements									
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)					
×	0	0	0	0	0					


Note1: O: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.

×: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

☆

8. OUTLINE DRAWINGS


8.1 FRONT VIEW

NL6448BC26-22F

Unit: mm

8.2 REAR VIEW

- Note1: The values in parentheses are for reference. Note2: The torque for product mounting screws must never exceed 0.294N·m. Note3: 2022 Mounting hole portions (4 pieces)

Unit: mm

AVNET EMBEDDED OFFICES

DENMARK

Avnet Embedded Avnet Nortec A/S Ellekær 9 2730 Herlev Phone: +45 3678 6250 Fax: +45 3678 6255 denmark@avnet-embedded.eu

FINLAND

Avnet Embedded Avnet Nortec Oy Pihatörmä 1 B 02240 Espoo Phone: +358 20 749 9 260 Fax: +358 20 749 9 280 finland@avnet-embedded.eu

FRANCE

Avnet Embedded Avnet EMG France SA Parc Club du Moulin à Vent, Bât 10 33, rue du Dr Georges Lévy 69693 Vénissieux Cedex Phone: +33 4 78 77 13 92 Fax: +33 4 78 77 13 97 bron@avnet-embedded.eu

Avnet Embedded Avnet EMG France SA 14 avenue Carnot 91349 Massy Cedex Phone: +33 1 64 47 29 29 Fax: +33 1 64 47 99 99 paris@avnet-embedded.eu

Avnet Embedded Avnet EMG France SA Les Peupliers II 35 avenue des Peupliers 35510 Cesson-Sévigné Phone: + 33 2 99 77 37 02 Fax: + 33 2 99 77 37 01 rennes@avnet-embedded.eu

GERMANY (AUSTRIA, CZECH REPUBLIC, HUNGARY, POLAND, SWITZERLAND)

Avnet Embedded Avnet EMG GmbH Gruber Straße 60c 85586 Poing Phone: +49 8121 775 500 Fax: +49 8121 775 550 poing@avnet-embedded.eu

Avnet Embedded Avnet EMG GmbH Lötscher Weg 66 41334 Nettetal Phone: +49 8121 775 500 Fax: +49 8121 775 550 nettetal@avnet-embedded.eu

ITALY (PORTUGAL, SPAIN)

Avnet Embedded Avnet EMG Italy SRL Via Manzoni, 44 20095 Cusano Milanino Phone: +39 02 660 92 1 Fax: +39 02 660 92 498 milano@avnet-embedded.eu

NETHERLANDS (BELGIUM, LUXEMBOURG)

Avnet Embedded Avnet B.V. Takkebijsters 2 4817 BL Breda Phone: +31 76 5722400 Fax: +31 76 5722404 benelux@avnet-embedded.eu

SWEDEN (NORWAY)

Avnet Embedded Avnet Nortec AB Esplanaden 3 D 172 67 Sundbyberg Phone: +46 8 564 725 50 Fax: +46 8 760 01 10 sweden@avnet-embedded.eu

UNITED KINGDOM (IRELAND)

Avnet Embedded 5a Waltham Park White Waltham Maidenhead Berkshire, SL6 3TN Phone: +44 1628 518900 Fax: +44 1628 518901 uk@avnet-embedded.eu

All trademarks and logos are the property of their respective owners. No guarentee as to the accuracy, completeness or reliability of any information. Subject to modifications and amendments.